Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APPSw,Ind) mice.

نویسندگان

  • Kunlin Jin
  • Veronica Galvan
  • Lin Xie
  • Xiao Ou Mao
  • Olivia F Gorostiza
  • Dale E Bredesen
  • David A Greenberg
چکیده

Neurogenesis continues in the adult brain and is increased in certain pathological states. We reported recently that neurogenesis is enhanced in hippocampus of patients with Alzheimer's disease (AD). We now report that the effect of AD on neurogenesis can be reproduced in a transgenic mouse model. PDGF-APP(Sw,Ind) mice, which express the Swedish and Indiana amyloid precursor protein mutations, show increased incorporation of BrdUrd and expression of immature neuronal markers in two neuroproliferative regions: the dentate gyrus and subventricular zone. These changes, consisting of approximately 2-fold increases in the number of BrdUrd-labeled cells, were observed at age 3 months, when neuronal loss and amyloid deposition are not detected. Because enhanced neurogenesis occurs in both AD and an animal model of AD, it seems to be caused by the disease itself and not by confounding clinical factors. As neurogenesis is increased in PDGF-APP(Sw,Ind) mice in the absence of neuronal loss, it must be triggered by more subtle disease manifestations, such as impaired neurotransmission. Enhanced neurogenesis in AD and animal models of AD suggests that neurogenesis may be a compensatory response and that measures to enhance neurogenesis further could have therapeutic potential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short-Term Environmental Enrichment Rescues Adult Neurogenesis and Memory Deficits in APPSw,Ind Transgenic Mice

Epidemiological studies indicate that intellectual activity prevents or delays the onset of Alzheimer's disease (AD). Similarly, cognitive stimulation using environmental enrichment (EE), which increases adult neurogenesis and functional integration of newborn neurons into neural circuits of the hippocampus, protects against memory decline in transgenic mouse models of AD, but the mechanisms in...

متن کامل

Restored glial glutamate transporter EAAT2 function as a potential therapeutic approach for Alzheimer’s disease

Glutamatergic systems play a critical role in cognitive functions and are known to be defective in Alzheimer's disease (AD) patients. Previous literature has indicated that glial glutamate transporter EAAT2 plays an essential role in cognitive functions and that loss of EAAT2 protein is a common phenomenon observed in AD patients and animal models. In the current study, we investigated whether ...

متن کامل

Crtc1 activates a transcriptional program deregulated at early Alzheimer's disease-related stages.

Cognitive decline is associated with gene expression changes in the brain, but the transcriptional mechanisms underlying memory impairments in cognitive disorders, such as Alzheimer's disease (AD), are largely unknown. Here, we aimed to elucidate relevant mechanisms responsible for transcriptional changes underlying early memory loss in AD by examining pathological, behavioral, and transcriptom...

متن کامل

Dataset for the role of sustained attention in memory formation of transgenic mice for Alzheimer׳s disease

Weekly submission of rats to active avoidance apparatus can be considered a neurostimulation strategy, once it can improve memory and can increase the density of receptors from different neurotransmitter systems in brain areas related to memory. These benefits were observed in rats chronically infused with amyloid-β peptide. In the present work it is presented that the same benefit for memory w...

متن کامل

Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer's disease mice.

We have recently shown that Alzheimer's disease (AD) transgenic mice given a moderate level of caffeine intake (the human equivalent of 5 cups of coffee per day) are protected from development of otherwise certain cognitive impairment and have decreased hippocampal amyloid-beta (Abeta) levels due to suppression of both beta-secretase (BACE1) and presenilin 1 (PS1)/gamma-secretase expression. To...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 36  شماره 

صفحات  -

تاریخ انتشار 2004